Enerģētika

Enerģētikas un klimata modelēšana virzībā uz oglekļa neitralitāti

Dzintars Jaunzems, Dr.sc.ing. VASSI, RTU

Content

- 1. The aim and the objectives
- 2. Energy and climate modelling system:
 - 1. Functionality & features
 - 2. Drivers & Scenarios
- 3. Conclusions & final remarks

SRP "Energy and climate modelling towards net zero emissions"

The aim

Development of the analytical knowledge base by introducing most

up-to-date system of modelling instruments and tools, taking into account techno-economic approach & socio-technical aspects

- 1. Conduct analysis for data availability and develop new methodology for data management, prepare data base for modelling purposes
- 2. Develop the modelling systems and data sets, conduct modelling of socio-technical transition
- 3. Develop scenarios for energy climate system socio-technical transition up to 2050
- 4. Compare and **analyse the results**
- 5. Assess economic, social and environmental impact of low carbon socio-technical transition
- 6. Prepare policy proposals for the long term development of Latvian national energy system and climate policy.

Developed energy & climate modelling system

RTU VASSI

RĪGAS TEHNISK UNIVERSITĀTI

Scheme of Latvian multi modelling system (*supplement and soft-link*) **RTU:** TIMES & SD & EnergyPLAN, **LU:** (CGE), **LLU:** (Forest expert & LASAM)

TIMES LATVIA energy system model blocks and structure

TIMES - Technology rich, bottom-up optimisation tool

UNIVERSITÄTE

Functionality and features (TIMES)

➢ Resource availability and limitation, if any

> Technology capacity limitation:

Max new and/or additional capacity connect to the grid

➤ Time slices for different energy sources (wind, solar, hydro etc.) and demands

> Techonology techno-economical parameters:

≻CAPEX, OPEX, life time,

≻ Efficiency, capacity & availability factor etc.

➢ Financial support (subsidies, grants etc.)

≻ Taxes, e.g. CO_2 tax

Residential & commercial and public sectors:

- Heating and cooling sub-processes (energy -> heated area)
- Lightning not only energy, but Im/W and light output (light amount).

Transport sector:

Passenger mobility and behaviour:

- Travel Time Budget
- Distances (<5km, 5-25km, >25km)
- Comfort level

Intermittent energy generation

Seasonal capacity factor

Drivers and triggers of TIMES LATVIA (modelled on 11.2021.)

2019

10.5

5.94

4.5

10.7

2000

1500

people

population,

Macroeconomic drivers:

Unit

EUR/

GJ

EUR/t

EUR/t

Tax

Excise

CO₂

Natural

resource

GDP, population, heated area, sectoral deployment etc. ٠

Resource

Diesel oil

Natural gas

 CO_2

Coal

Sectoral energy demand projections are based on EU Reference Scenarios 2020

Taxes used in the model

2018

10.5

5.94

2.85

10.7

2017

9.6

115.7

2.85

10.7

45,000

40.000

N!B! Energy and CO₂ prices sky-rocketed in 2022

Scenarios (modelled on 11.2021.)

Matrix of developed pathways and scenarios for TIMES Latvia model:

1. BASE line scenario

Business as usual

- 2. National Energy and Climate plan scenario Measures, activities and focus from NECP 2030
- **3. GHG Target scenario** Goal oriented optimisation

Total final consumption (modelled on 11.2021.)

Total final energy consumption by energy sources (modelled on 11.2021.)

Decrease in final energy consumption by 34 PJ (↓18,9%) – BASE v.s. GHG scenario @2050

GHG scenarios (optimised energy system and optimal energy system structure) lead to lower energy demand due to radical energy efficiency and faster energy transition

Residential sector (modelled on 11.2021.)

Reduction of final energy consumption are the same in NECP v.s. GHG scenario @2050, but lower GHGs

nal consumption, F ■ Biomass Other fossil Ë Natural gas 2017 2018 2019 2020 2025 2030 2035 2040 2045 2050

Total energy related GHG emissions in different scenarios (modelled on 11.2021.)

Decrease in GHG emissions by 4188 kt (↓63.9%) – BASE v.s. GHG scenario

Delivered by energy efficiency measures (~20%) + energy transition (80%)

RĪGAS TEHNISKĀ UNIVERSITĀTE

Conclusions and final remarks

Projections – not forecasts Created and developed solid **analytical knowled**

Created and developed solid **analytical knowledge base & modelling capacity** in IESE, RTU – SD & TIMES & EnergyPLAN

- 1. NECP & GHG target scenarios leads to reduced total energy consumption by 7,1 and 18,8 %, respectively
- 2. GHG Target scenario it is possible to cover energy demand and significantly reduce GHG by rather radical and strong energy transition measures
 - \checkmark Energy efficiency measures delivers \sim 20 %
 - ✓ Energy transition delivers ~80 %
- 3. Energy transition prevails over energy efficiency on the way to the climate neutrality it should be vice versa
- 4. Concept of energy system and base loads should be changed

Dzintars Jaunzems Dzintars.jaunzems@rtu.lv

Institute of Energy System and Environment, RTU info@videszinatne.lv https://videszinatne.rtu.lv/

